nanni

Ambient-Light-Promoted Three-Component Annulation: Synthesis of Perfluoroalkylated Pyrimidines

Rui Wang,^{†,‡} Wei Guan,[‡] Zheng-Bo Han,[†] Fushun Liang,*^{,†} Takeo Suga,^{||} Xihe Bi,*^{,‡} and Hiroyuki Nishide[∥]

† College of Chemistry, Liaoning University, Shenyang 110036, China

‡ Department of Chemistry, Northeast Normal University, Changchun 130024, China

∥ Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan

S Supporting Information

[AB](#page-3-0)STRACT: [An ambient](#page-3-0)-light-promoted and metal-free three-component reaction of active methylene compounds, perfluoroalkyl iodides, and guanidines/amidines is reported. This constitutes a powerful method to prepare perfluoroalkylated pyrimidines with mild reaction conditions, broad substrate scope, excellent functional group tolerance, and simple operation. A radical/polar mechanism involving the

formation of a halogen-bond adduct and radical cross-coupling is proposed.

Pyrimidine and its derivatives are ubiquitous in natural
products, synthetic drugs, and functional materials.¹ Traditionally, pyrimidines could be synthesized by the condensation of amidines or amidinium salts with 1,[3](#page-3-0) dicarbonyl compounds, $\frac{2}{3}$ cyclization of amides, nitriles mediated by trifluoromethanesulfonic anhydride and 2-chloropyridine reagent combination,³ inverse-electron-demand Diels-Alder reactions of $1,2,3$ -triazines with amidine dienophiles,⁴ and transition-metal-catal[yze](#page-3-0)d modification by cross-coupling of h[a](#page-3-0)logen precursors.⁵ In past years, transition-metal-catalyzed multicomponent assembly of pyrimidines has emerged as a powerful and usefu[l](#page-3-0) alternative strategy. Representative work includes the palladium-catalyzed alkynone intermediate-based three- or four-component pyrimidine synthesis reported by the Müller group $^{\circ}$ (Figure 1a); titanium-catalyzed one-pot and twostep cycloaddition of alkynes, nitriles, amines, and almidines developed [by](#page-3-0) Odom and co-workers;⁷ (Figure 1b) and Kempe's iridium- or manganese-catalyzed multicomponent synthesis of pyrimidines from amidines [an](#page-3-0)d alcohols 8 (Figure 1c). In addition, Wu and Jiang reported an elegant palladiumcatalyzed oxidative three-starting-material, four-c[om](#page-3-0)ponent reaction strategy for the synthesis of pyrimidine carboxamides (Figure 1d).⁹ While remarkable progress has been made, the method for assembling fluorine-functionalized pyrimidines by a multicompo[ne](#page-3-0)nt reaction has been less developed so far.¹⁰ Electron-donor−acceptor (EDA) complexes have recently found exciting applications in organic synt[he](#page-3-0)sis.¹¹ The halogen-bond adduct, which is formed on the basis of intermolecular noncovalent weak interaction, 12 is und[oub](#page-3-0)tedly classified as an EDA complex. As part of our continued interest in halogen-bond chemistry,¹³ we here repor[t a](#page-3-0) metal-free and visible-light-promoted three-component reaction 14 to assemble the pyrimidine scaffold via [fo](#page-3-0)rmal $[2 + 1 + 3]$ cyclization of active methylenes, perfluoroalkyl iodides, an[d](#page-3-0) guanidines/

Figure 1. Multicomponent assembly of functionalized pyrimidines.

amidines (Figure 1e).¹⁵ This research represents the first photopromoted halogen-bond adduct enabled three-component cascade strategy l[ead](#page-3-0)ing to perfluoroalkylated pyrimidines. The introduction of fluorine (s) into pyrimidine ring is of great value because the perfluoroalkyl group would strongly modify their lipophilicity, bioactivity, and metabolic stability.

Our initial investigation focused on the condition optimization with the model reaction of ethyl acetoac[eta](#page-3-0)te 1a, perfluorobutyl iodide 2a (1.1 equiv), and guanidine hydro-

Received: March 27, 2017 Published: April 17, 2017

chloride 3a (1.1 equiv) in the presence of a base (4.1 equiv) (Table 1). Note that 1 equiv of the base is used to neutralize

a
Reaction conditions: 1a (0.1 mmol), base (4.1 equiv), 2a (1.1 equiv), and 3a (1.1 equiv) in solvent (0.5 mL) . b_1 equiv of the base is used to $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are contracted (i.e. $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ are contracted in the dark. $\frac{1}{2}$ Reaction under N_2 atomosphere. $nr = no$ reaction.

HCl from 3a. No reaction occurred with K_2CO_3 (4.1 equiv) as the base in MeCN (0.5 mL) (entry 1). Delightfully, in the case of using Cs_2CO_3 as the base, fully substituted pyrimidine 4a was obtained in 39% yield (entry 2). An improved yield of 70% was achieved with KOH (entry 3), and NaOH proved to be more effective, giving 4a in 87% yield (entry 4). The structure of 4a was unequivocally resolved by single-crystal X-ray analysis (CCDC 1485697). Other bases like NaOEt led to significantly decreased yield (24%), and NaOtBu was completely inactive (entries 5 and 6). Organic bases such as triethylamine and 1,4 diazabicyclo[2.2.2]octane (DABCO) proved to be ineffective (entries 7 and 8). We supposed that organobases mentioned above may function as electron donors to interact with 2a, an electron acceptor, thus inhibiting the formation of EDA complex between the enolates of 1a and 2a. The choice of the solvent is also crucial for the reaction (entries 9−12). In comparison with MeCN, DMSO and DMF were less efficient (entries 9 and 10), whereas dichloromethane (DCM) and toluene were totally inert (entries 11 and 12). Notably, all of the reactions were carried out at room temperature under ambient light conditions. However, reactions conducted in the dark led to remarkably decreased yield (entry 13), illustrating that visible light is helpful in promoting the reaction. In addition, reaction under N_2 atomosphere proceeded as well (entry 14), thus indicating oxygen has no effect on the transformation.

With the optimized conditions in hand (Table 1, entry 4), we set out to study the reaction scope. Initially, a range of active methylene compounds were subjected to the reaction sequence at room temperature in the open air conditions (Scheme 1). The reactions of β -keto esters containing alkyl substituents (R = Me, Et, *i*-Pr, CF_3) with perfluorobutyl iodide 2a (1.1 equiv) and guanidine hydrochloride 3a (1.1 equiv) in the presence of NaOH (4.1 equiv) in MeCN (0.5 mL) proceeded smoothly,

"Reaction conditions: 1 (0.1 mmol), NaOH (4.1 equiv), $2a$ (1.1 equiv), and $3a$ (1.1 equiv) in MeCN (0.5 mL). b^b1 equiv of the base was used to neutralize HCl from 3a. ^cIsolated yields. ^dIn DMSO (0.5 mL). c_{\ln} DMF (0.5 mL).

giving the corresponding 4-perfluoropropyl pyrimidines 4a−d in 81−87% yields. α-Aroyl esters (R = H, 4-Me, 4-MeO, 4-F) afforded 6-arylpyrimidines 4e−h in good to excellent yields. However, ethyl 4-nitrobenzoylacetate was inactive, while β diketones proved to be suitable substrates. For example, pentane-2,4-dione and dibenzoylmethane furnished 5-acylsubstituted pyrimidines 4i and 4j in 78% and 49% yields, respectively. However, deacetylation was observed for benzoylacetone, giving trisubstituted pyrimidine 4k in 48% yield.

To further examine the scope and utility of this reaction, the scope of guanidine and amidine derivatives was examined by reaction with β-keto esters and 2a under otherwise identical conditions (Scheme 2). To our delight, N-methyl- and N,Ndimethylguanidines gave fully substituted pyrimidines 5a and

a
Reaction conditions: 1 (0.1 mmol), base (4.1 equiv), 2a (1.1 equiv) and 3 (1.1 equiv) in MeCN (0.5 mL). b^L Isolated yield. ^cIn DMF (0.5 mL).

5b in 55% and 88% yields, respectively. A number of amidines with different steric and electronic properties were appropriate partners. The reactions proceeded efficiently for both alkyl- and arylamidines, affording highly functionalized pyrimidines 5c−n in moderate to excellent yields as well as good functional group tolerance. Note that pyrimidine-cored m-teraryls 5e−k were successfully prepared by the reaction of α -benzoyl ester, 2a, and arylamidines, which are generally obtained via a transitionmetal-catalyzed aryl−heteroaryl coupling protocol.¹⁷ To demonstrate the scalability of this protocol, we conducted a reaction on large scale and observed that the gra[m-](#page-3-0)scale synthesis of 5i (3.82 g) proceeded well under the standard conditions with a yield of 78% (see Scheme S1 for details).

Next, we turn our attention to the scope of perfluoroalkyl halides.¹⁸ As shown in Scheme 3, [a variety of](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf) perfluoroalkyl

^aReaction conditions: 1b (1.0 mmol), 2 (1.1 equiv), and 3a (1.1 equiv), NaOH (4.1 equiv) , MeCN (0.5 mL) . b Isolated yields. c In DMF (0.5 mL).

iodides with different chain lengths were suitable substrates in this multicomponent reaction. Both shorter and longer perfluorinated chains could be installed in pyrimidines, giving the corresponding perfluoroalkylated 6a−f in good to excellent yields (56–92%). In particular, gaseous CF_3CF_2I was a good partner for this reaction, affording 4-trifluoromethyl-containing pyrimidine 6a in 56% yield. Interestingly, a chlorodifluoromethyl functionality could be introduced onto the 4-position of pyrimidines when using 1-chloro-1,1,2,2-tetrafluoro-2-iodoethane (6f, 76% yield). The results listed in Schemes 1−3 demonstrate the broad substrate scope, excellent functional group tolerance, and high efficiency of this th[ree-compone](#page-1-0)nt reaction, thus providing a new and practical method for the synthesis of pharmacologically relevant perfluoroalkylated pyrimidines.

To gain insight into the reaction mechanism, we conducted a mechanistic study (Scheme 4). In the reaction of ethyl 3 oxobutanoate, perfluorobutyl iodide (1.1 equiv), and tetra-

methyl guanidine (3.3 equiv), tetrasubstituted alkene 7 was isolated in 55% yield (eq 1), thus suggesting a $S_N V$ reaction might take place. To probe whether radical intermediates are involved in this three-component reaction, 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), an efficient free radical scavenger, was introduced as an additive under the standard conditions (eq 2). The reaction to form 4a was completely inhibited, suggesting that TEMPO has significant effect on the reaction. Furthermore, we examined the reaction in the presence of a single electron transfer (SET) inhibitor, p-dinitrobenzene (p-DNB), which led to a significant decrease in the product yield (16%). Notably, the homodimer of 1b was isolated as a byproduct during the reaction (Scheme S2). Taken together, these observations indicate that a mechanism involving radical and SET pathways is most likely.

On the basis of the above r[esults,](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf) [a](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf) [tan](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf)dem radical/polar mechanism 19 for the three-component reaction is proposed (Scheme 5). (i) A halogen-bond adduct II ($r_{I\cdots O} = 2.61$ Å) is

Scheme 5. Proposed Mechanism

formed in situ by the interaction of transiently generated enolate I (halogen-bond acceptor) and perfluorobutyl iodide (halogen-bond donor).^{20,21} (ii) Collapse of complex II via SET leads to the generation of carbon radical III and C_4F_9I radical anion, which releases [an io](#page-3-0)dide anion to give C_4F_9 radical IV. (iii) Radical cross-coupling between III and IV delivers α perfluoroalkylated intermediate V. (iv) Alkene VI is formed via elimination of HF. (v) An $S_N V$ type reaction of electron-poor alkene VI by guanidine nucleophile gives alkene 7, in which resonance structures can be formulated via the push−pull electronic effect. (vi) Intramolecular condensation leads to the final product $4a^{22}$ In the ambient-light-promoted halogenbond adduct enabled three-component process, fully functionalized pyrimidine[s](#page-3-0) are assembled in a formal $\begin{bmatrix} 2 + 1 + 3 \end{bmatrix}$ annulation in which one C−C bond and two C−N bonds are built up.

In conclusion, we have developed the first photopromoted three-component reaction enabled by a halogen-bond adduct. The result of the research allows for highly efficient assembly of perfluoroalkylated pyrimidines via formal $\begin{bmatrix} 2 & + & 1 & + & 3 \end{bmatrix}$ annulation of the readily available active methylene compounds, perfluoroalkyl iodides, and guanidines/amidines. This work has provided an elegant example of the utilization of noncovalent weak interaction like halogen bonding in multicomponent reaction, thus illustrating the power and potential of EDA complex in photocatalyzed synthetic chemistry. In addition, these easily available and highly functionalized perfluoroalkylated pyrimidines would be of great interest in medicinal research and further synthetic derivatization.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b00894.

[Experimental procedure a](http://pubs.acs.org)nd characteri[zation data for all](http://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b00894) [compou](http://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b00894)nds (PDF)

X-ray crystallographic data for 4a (CIF)

■ AUTHOR INF[ORM](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf)ATION

Corresponding Authors

*E-mail: fsliang@lnu.edu.cn. *E-mail: bixh507@nenu.edu.cn.

ORCID[®]

Zheng-Bo Han: [0000-0001-8635](mailto:bixh507@nenu.edu.cn)-9783 Fushun Liang: 0000-0003-4195-3863

Notes

The authors de[clare no competing](http://orcid.org/0000-0003-4195-3863) financial interest.

■ ACKNOWLEDGMENTS

Financial support from NSFC (21172034, 21372039, 21372038, and 21522202) is greatly acknowledged.

■ REFERENCES

(1) (a) Lagoja, I. M. Chem. Biodiversity 2005, 2, 1. (b) Walker, S. R.; Carter, E. J.; Huff, B. C.; Morris, J. C. Chem. Rev. 2009, 109, 3080. (c) Erian, A. W. Chem. Rev. 1993, 93, 1991. (d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627.

(2) (a) Pinner, A. Ber. Dtsch. Chem. Ges. 1885, 18, 759. (b) Pinner, A. Ber. Dtsch. Chem. Ges. 1887, 20, 2361. (c) Wendelin, W.; Schermanz, K.; Schweiger, K. Monatsh. Chem. 1983, 114, 1371. (d) Miller, A. J. Org. Chem. 1984, 49, 4072. (e) Porcheddu, A.; Giacomelli, G.; De Luca, L.; Ruda, A. M. J. Comb. Chem. 2004, 6, 105.

(3) (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254. (b) Movassaghi, M.; Hill, M. D. Nat. Protoc. 2007, 2, 2018. (c) Hill, M. D.; Movassaghi, M. Chem. - Eur. J. 2008, 14, 6836.

(4) (a) Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133, 12285. (b) Duerfeldt, A. S.; Boger, D. L. J. Am. Chem. Soc. 2014, 136, 2119. (c) Glinkerman, C. M.; Boger, D. L. Org. Lett. 2015, 17, 4002. (5) (a) Plé, N.; Turck, A.; Heynderickx, A.; Quéguiner, G. Tetrahedron 1998, 54, 9701. (b) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. (c) Billingsley, K.;

Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358. (6) (a) Karpov, A. S.; Müller, T. J. J. Org. Lett. 2003, 5, 3451.

(b) Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 6951. (c) D'Souza, D. M.; Müller, T. J. J. Nat. Protoc. 2008, 3, 1660.

(7) (a) Majumder, S.; Odom, A. L. Tetrahedron 2010, 66, 3152. (b) Odom, A. L.; McDaniel, T. J. Acc. Chem. Res. 2015, 48, 2822.

(8) (a) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804. (b) Deibl, N.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 1663. (9) Guo, W.; Liao, J.; Liu, D.; Li, J.; Ji, F.; Wu, W.; Jiang, H. Angew.

Chem., Int. Ed. 2017, 56, 1289. (10) For selected examples of fluorinated pyrimidines, see: (a) Sharma, N.; Chundawat, T. S.; Mohapatra, S. C.; Bhagat, S. Synthesis 2016, 48, 4495. (b) Verbitskiy, E. V.; Baskakova, S. A.;

Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L.; Chupakhin, O. N.; Charushin, V. N. Bioorg. Med. Chem. 2016, 24, 3771. (c) Feng, P. J.; Lee, K. N.; Lee, J. W.; Zhan, C. B.; Ngai, M. Y. Chem. Sci. 2016, 7, 424. (d) Iaroshenko, V. O. Synthesis 2009, 2009, 3967.

(11) For selected examples, see: (a) Arceo, E.; Jurberg, I. D.; Á lvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750. (b) Nappi, M.; Bergonzini, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 4921. (c) Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678. (d) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438. (e) Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120. (f) Kandukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.; Escudero-Adán, E. C.; Melchiorre, P. Angew. Chem., Int. Ed. 2015, 54, 1485. (g) Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436. (h) Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515. Review: (i) Lima, C. G. S.; de M. Lima, T.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.

(12) (a) Metrangolo, P.; Resnati, G.; Halogen Bonding: Fundamentals and Applications; Springer: Berlin, 2008. (b) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478. (c) Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G. Chem. Soc. Rev. 2010, 39, 3772. (d) Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Angew. Chem., Int. Ed. 2008, 47, 6114. (e) Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Acc. Chem. Res. 2005, 38, 386.

(13) Selected halogen-bonding-promoted reactions from our group: (a) Wei, Y.; Lin, S.; Liang, F. Org. Lett. 2012, 14, 4202. (b) Wei, Y.; Lin, S.; Liang, F.; Zhang, J. Org. Lett. 2013, 15, 852. (c) Wei, Y.; Liang, F.; Zhang, X. Org. Lett. 2013, 15, 5186. (d) Li, M.; Yuan, H.; Zhao, B.; Liang, F.; Zhang, J. Chem. Commun. 2014, 50, 2360. (e) Tan, H.; Li, M.; Liang, F. RSC Adv. 2014, 4, 33765. (f) Zhang, L.; Li, Y.; Jin, L.-Y.; Liang, F. RSC Adv. 2015, 5, 65600.

(14) (a) Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim, 2005. (b) Photoinduced multicomponent reactions: Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Angew. Chem., Int. Ed. 2016, 55, 15476.

(15) Recent reviews on the visible-light photocatalytic heterocycle synthesis and fluoroalkylation: (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911. (b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044. (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937. (d) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153.

(16) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

(17) For a review, see: Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; ́ Lemaire, M. Chem. Rev. 2002, 102, 1359.

(18) No reaction was observed when perfluorobutyl bromide was used.

(19) For a most recent example of radical/polar crossover reaction, see: Kischkewitz, M.; Okamoto, K.; Mü ck-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936.

(20) A distinct coloration can be observed (Figure S1), indicating the formation of halogen bond adduct. For the DFT calculation, see Figure S2.

(21) (a) Sun, X.; Wang, W.; Li, Y.; Ma, J.; [Yu, S.](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf) Org. Lett. 2016, 18, 4638. (b) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962. (c) Jiang, H.; He, [Y.; Cheng](http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00894/suppl_file/ol7b00894_si_001.pdf), Y.; Yu, S. Org. Lett. 2017, 19, 1240. (d) Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442.

(22) The formation of intermediates V via nucleophilic substitution of perfluoroalkyl iodide by enolate was tentatively ruled out (Scheme 4 and Scheme S2).