RSC Advances

View Article Online

View Journal | View Issue

COMMUNICATION

Cite this: RSC Adv., 2014, 4, 33765

Direct α -C-H amination of β -dicarbonyl compounds using DBU-activated N-haloimides as nitrogen sources[†]

Received 26th May 2014 Accepted 25th July 2014 Hui Tan,^a Mengru Li^a and Fushun Liang*^{ab}

DOI: 10.1039/c4ra07118b

www.rsc.org/advances

By DBU activation, *N*-haloimides may act as a self-immolating reagent, to convert β -dicarbonyl compounds into α -imidated products in high efficiency. The DBU/*N*-haloimide protocol provides a novel, mild, and complimentary access to α -imidated β -dicarbonyl compounds, without the necessity of external nitrogen sources.

α-Amido β-dicarbonyl compounds are versatile organic intermediates in the synthesis of various heterocyclic compounds,¹ peptide mimetics,² α -amino acids and their derivatives,³ and β hydroxyl α-amino esters.⁴ Classical methods for the synthesis of α -amido β -dicarbonyl compounds include the strong basemediated acylation of the ketimine derivatives of a-amino esters² and N-C acyl migration of the N-tert-butoxycarbonyl-Nacylglycine ester;⁵ the reduction of α-hydroxyimino⁶ and phenylazo⁷ β-dicarbonyl compounds; the hydrolysis of oxazole-4carboxylate derivatives;8 and N-H insertion of metal carbenes.9 However, these methods are limited by the utilization of a strong base, substrate availability, and multistep procedures. Direct α -amination of the readily available β -dicarbonyl compounds is more convenient and highly desirable for the synthesis of α-amido β-dicarbonyl compounds. Most common methods involve electrophilic amination of β-dicarbonyl compounds to azodicarboxylates10 and the N-selective nitroso aldol reaction.¹¹ Despite the significant advances made in the area, new and efficient methods, especially direct α-amination methods, are still required.

Recently, hypervalent iodine(m)-mediated α -amination of β dicarbonyl compounds have been developed.¹² Zhang and coworkers reported a mild and efficient method for the direct and fast α -amination of β -dicarbonyl compounds using PhIO as the oxidant and TsNH₂ as the aminating reagent catalyzed by

Scheme 1 α -C-H imidation of β -dicarbonyl compounds by using DBU-activated *N*-haloimides.

Table 1 Optimization of the reaction conditions^a

Entry	<i>N</i> -Haloimide	Activator	Solvent ^b	Time (min)	Yield ^c (%)
1	NBP	_	MeCN	20	45^d
2	NBP	PPh ₃	MeCN	180	n.d.
3	NBP	DMAP	MeCN	240	n.d.
4	NBP	DABCO	MeCN	60	Trace
5	NBP	DBU	MeCN	20	89
6	NBP	DBN	MeCN	30	85
7	NBP	MTBD	MeCN	7	90
8	NBP	DBU	DCE	20	85
9	NBP	DBU	THF	20	79
10	NBP	DBU	DMF	20	64
11	NBP	DBU	Toluene	240	60
12	NCP	DBU	MeCN	360	30

^{*a*} Reactions were carried out with **1a** (1.0 mmol), NBP (1.5 equiv.), and activator (1.8 equiv.) in solvent (2.0 mL) at room temperature. ^{*b*} Solvent was used directly as received. ^{*c*} Isolated yield. ^{*d*} α -Bromonated product and α , α -dibromonated product were obtained in respective 45% and 42% yields. MTBD = 7-methyl-1,5,7-triazabicyclo [4.4.0]dec-5-ene.

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, China. E-mail: liangfs112@nenu.edu.cn; Fax: +86-431-85099759

^bKey Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

[†] Electronic supplementary information (ESI) available: Experimental details and characterization for all new compounds. See DOI: 10.1039/c4ra07118b

perchlorate zinc hexahydrate.^{12a} Chan *et al.* described a copper(II) triflate catalyzed amination of 1,3-dicarbonyl compounds with PhI=NTs.^{12b} In our research on halogen-mediated organic transformations,¹³ we disclosed that DBU-activated NBS (*N*-bromosuccinimide) or NBP (*N*-bromophthalimide) *via* a halogen bond interaction can be utilized as an efficient halogenation reagent,^{13a} amination reagent^{13b-d} and haloamination reagent.^{13e} Herein, we would like to communicate the direct α -C-H imidation of β -dicarbonyl compounds by using DBU-activated *N*-haloimides as both electrophilic and nuceophilic reagents (Scheme 1). The *N*-haloimide/DBU combination provides a convenient and economic protocol toward α -C-H imidation of β -dicarbonyl compounds. The distinct feature of

the reaction is without the necessity of external nitrogen sources.

Initially, the model reaction of ethyl acetoacetate (1a) with NBP was examined under a variety of conditions (Table 1). In the absence of any activator, the reaction of 1a and NBP (1.5 equiv.) in MeCN at room temperature gave α -bromonated and α, α -dibromonated products in respective 45% and 42% yields (entry 1). By the utilization of PPh₃ or DMAP as the activator, no imidated product was observed (entries 2–3). DABCO afforded only trace amount of the target molecule. However, once DBU was introduced, the reaction proceeded rapidly, and 2-(1,3-dioxoisoindolin-2-yl)-3-oxobutanoate (2a) and ethyl 2-(1,3-dioxoisoindolin-2-yl)-3-hydroxybut-2-enoate (2a') were obtained in 89% yield within 20 min (entry 4). Amidine activator DBN and

Table 2 α -Imidation of β -dicarbonyl compounds ^{<i>a</i>} $R^{1} + Br - N \rightarrow R^{2} + $							
1	O O OEt 1a	$\begin{array}{c} O & O \\ \hline \\ \hline \\ NPhth \\ 2a \\ 2a' \\ (1: 4.3) \end{array} $	20	89			
2	O O OMe 1b	$\begin{array}{c} O & O \\ \hline \\ \hline \\ NPhth \\ \mathbf{2b} \\ \mathbf{2b} \\ \mathbf{2b} \\ \mathbf{2b} \\ 1 \\ 3 \\ 0 \\ $	25	88			
3	Ph OEt 1c	$\begin{array}{ccc} & O & OH & O\\ & Ph & OEt & Ph & OEt\\ & NPhth & NPhth \\ & 2c & 2c' & (1.3: 1) \end{array}$	180	83			
4	o o ↓↓↓N´Ph ↓ 1d	$\begin{array}{c} 0 & 0 \\ \hline \\ 1 \\ \hline \\ NPhth \end{array} \stackrel{Ph}{} Ph \\ \hline \\ NPhth \\ 2d \\ 2d' (1: 1.7) \end{array}$	25	91			
5	0 0 N 1e	0 NPhth 2e	25	83			
6	0 0 L If	OH O NPhth 2f	20	84			
7	Eto OEt	EtO NPhth 2g	30	90			
8 ^c	BnO OBn	BnO NPhth 2h	30	92			

^{*a*} Reactions were carried out with **1** (1.0 mmol), NBP (1.5 equiv.), and DBU (1.8 equiv.) in MeCN (2.0 mL) at rt. ^{*b*} Isolated yield. ^{*c*} Reactions were conducted with NBP (1.05 equiv.), and DBU (1.05 equiv.).

guanidine activator MTBD worked well (entries 5 and 6).¹⁴ Solvent screening indicated that DCE, THF, DMF and toluene led to decreased yields (entries 8–11). The reactivity of NCP was evaluated and the reaction became sluggish, along with a fairly low yield (entry 12).

With optimized reaction conditions in hand (Table 1, entry 5), we investigated this methodology with a range of β -

Scheme 2 Reactions of β -keto esters with *N*-bromoimides.

Scheme 3 α -Imidation of esters.^{a,b,a}Reactions were carried out with 1 (1.0 mmol), NBP (1.2 equiv.), and DBU (1.2 equiv.) in MeCN (2.0 mL). ^bIsolated yield. ^cAt rt for 5 h. ^dAt 80 °C for 2 h.

Scheme 4 Proposed mechanism for the α -imidation.

dicarbonyl compounds (Table 2). β -Keto esters **1a–c** afforded the corresponding α -imidation products **2a/2a'–2c**(**2c'**) in high yields (entries 1–3). Two β -ketoamides, *N*-methyl-3-oxo-*N*-phenylbutanamide and *N*,*N*-dimethyl-3-oxobutanamide were also examined. α -Imidation products **2d/2d'** and **2e** (in complete keto form) were obtained in 91% and 85% yield, respectively (entries 4 and 5). Reaction with β -diketone **1f** proceeded smoothly, furnishing α -imidated product **2f** (in complete enol form) in 84% yield (entry 6). For malonic esters **1g** and **1h**, the corresponding α -imidated products **2g** and **2h** were obtained in excellent yields (entries 7 and 8).¹⁵

Next, we investigated the efficacy of other *N*-haloimides as potential self-immolating nitrogen sources¹⁶ (Scheme 2). Similar to NBP, NBS was also a competent reagent, affording products 3a/3a', 3b/3b' and 3c in 65–85% yields.¹⁷ When *N*-bromosaccharin was subjected to the reaction sequence, the corresponding α -imidated compound 4 was produced in 87% yield (in complete enol form). All the above reactions indicate the high efficiency and broad scope for both β -dicarbonyl compounds and *N*-haloimides.

Other than β -dicarbonyl compounds, α -substituted ethyl acetates were also examined (Scheme 3). As a result, the α -imidation of esters was achieved and products **6a** (R = phenyl) and **6b** (R = 4-bromophenyl) were obtained in 43% and 52% yields, respectively. However, no reaction occurred in the case of using ethyl acetate as the substrate.

On the basis of all the results described above, along with our previous work,^{13*a*-*e*} a possible mechanism for the α -imidation of β -dicarbonyl compounds was proposed in Scheme 4. On one hand, NBP reacts with DBU to form a 1 : 1 adducts **I** and **II** *via* halogen bond interaction, which may further transform into tight ion pair intermediate **III** with enhanced electrophilic and nucleophilic ability.¹⁸ On the other hand, enolate **IV** is produced in the presence of DBU. The reaction between enolate **IV** and activated bromide intermediate **III** furnishes α -bromo β -dicarbonyl **V**.¹⁹ Finally, imidated product **2a** and **2a**' is formed *via* nucleophilic substitution of **V** by the phthalimide anion.²⁰ The function of DBU is to deprotonate β dicarbonyl compounds (as base) and to activate NBP (as a nucleophilic promoter).

Conclusions

In summary, we have developed a highly efficient, atomeconomic, environmentally friendly and metal-free methodology for direct α -imidation of 1,3-dicarbonyl compounds with *N*-haloimide (activated by DBU) as potential direct amination reagent at ambient temperature. The scope of the reaction is broad in terms of both the *N*-haloimides and the β -dicarbonyl compounds. Thus, without the necessity of external nitrogen sources, a variety of important imidation products were prepared rapidly in moderate to excellent yields. The selfimmolating property of *N*-haloimides induced by halogen bonding activation appears to be attractive. Further research on the utilization of *N*-haloimide/DBU protocol in organic transformations is ongoing in our laboratory.

Acknowledgements

Financial support from the National Natural Science Foundation of China (21172034 and 21372039), and Program for New Century Excellent Talents in University (NCET-11-0611) is gratefully acknowledged.

Notes and references

- (a) C. L. L. Chai, J. A. Elix and P. B. Huleatt, *Tetrahedron*, 2005, **61**, 8722; (b) J. R. Davies, P. D. Kane and C. J. Moody, *Tetrahedron*, 2004, **60**, 3967; (c) E. Cohnen and R. Dewald, *Synthesis*, 1987, 566; (d) S. Maeda, M. Suzuki, T. Iwasaki, K. Matsumoto and Y. Iwasawa, *Chem. Pharm. Bull.*, 1984, **32**, 2536.
- 2 (a) L. L. Chang, G. X. Yang, E. McCauley, R. A. Mumford, J. A. Schmidt and W. K. Hagmann, *Bioorg. Med. Chem. Lett.*, 2008, 18, 1688; (b) J. Singh, T. D. Gordon, W. G. Earley and B. A. Morgan, *Tetrahedron Lett.*, 1993, 34, 211.
- 3 (a) R. Kuwano and Y. Ito, J. Am. Chem. Soc., 1999, 121, 3236;
 (b) K. Makino, N. Okamoto, O. Hara and Y. Hamada, *Tetrahedron: Asymmetry*, 2001, 12, 1757;
 (c) J. P. Genet, C. Pinel, S. Mallart, S. Juge, S. Thorimbert and J. A. Laffitte, *Tetrahedron: Asymmetry*, 1991, 2, 555.
- 4 (a) T. Maeda, K. Makino, M. Iwasaki and Y. Hamada, Chem.-Eur. J., 2010, 16, 11954; (b) B. Seashore-Ludlow, P. Villo, C. Häcker and P. Somfai, Org. Lett., 2010, 12, 5274; (c) K. Makino, Y. Hiroki and Y. Hamada, J. Am. Chem. Soc., 2005, 127, 5784; (d) C. Mordant, P. Dünkelmann, V. Ratovelomanana-Vidal and J.-P. Genet, Chem. Commun., 2004, 1296; (e) C. Mordant, P. Dünkelmann, V. Ratovelomanana-Vidal and J.-P. Genet, Eur. J. Org. Chem., 2004, 3017.
- 5 O. Hara, M. Ito and Y. Hamada, *Tetrahedron Lett.*, 1998, **39**, 5537.
- 6 R. H. Wiley and O. H. Borum, J. Am. Chem. Soc., 1948, 70, 1666.
- 7 W. A. Bolhofer, J. Am. Chem. Soc., 1952, 74, 5459.
- 8 M. Suzuki, T. Iwasaki, M. Miyoshi, K. Okumura and K. Matsumoto, *J. Org. Chem.*, 1973, **38**, 3571.
- 9 (a) S. Bertelsen, M. Nielsen, S. Bachmann and K. A. Jørgensen, Synthesis, 2005, 2234; (b) M. A. Honey, A. J. Blake, I. B. Campbell, B. D. Judkins and C. J. Moody, Tetrahedron, 2009, 65, 8995.
- 10 (a) J. S. Yadav, B. V. S. Reddy, C. Venugopal and B. Padmavani, *Tetrahedron Lett.*, 2004, 45, 7507; (b) M. Meseguer, M. Moreno-Mañas and A. Vallribera, *Tetrahedron Lett.*, 2000, 41, 4093; (c) M. Marigo, K. Juhl and K. A. Jørgensen, *Angew. Chem., Int. Ed.*, 2003, 42, 1367; (d) M. Terada, M. Nakano and H. Ube, *J. Am. Chem. Soc.*, 2006, 128, 16044; (e) Y. K. Kang and D. Y. Kim, *Tetrahedron Lett.*, 2006, 47, 4565; (f) A. Pericas, A. Shafir and A. Vallribera, *Org. Lett.*, 2013, 15, 1448; (g) Y. K. Kang and D. Y. Kim,

Tetrahedron Lett., 2006, **47**, 4565; (*h*) H. Konishi, T. Y. Lam, J. P. Malerich and V. H. Rawal, *Org. Lett.*, 2010, **12**, 2028.

- 11 (a) D. Sandoval, C. P. Frazier, A. Bugarin and J. R. de Alaniz, J. Am. Chem. Soc., 2012, 134, 18948; (b) C. Xu, L. Zhang and S. Luo, Angew. Chem., Int. Ed., 2014, 53, 4149.
- 12 (a) J. Yu, S.-S. Liu, J. Cui, X.-S. Hou and C. Zhang, Org. Lett., 2012, 14, 832; (b) T. M. U. Ton, F. Himawan, J. W. W. Chang and P. W. H. Chan, Chem.-Eur. J., 2012, 18, 12020.
- 13 (a) M. Li, Y. Li, B. Zhao, F. Liang and L.-Y. Jin, RSC Adv., 2014,
 4, 30046; (b) Y. Wei, S. Lin and F. Liang, Org. Lett., 2012, 14,
 4202; (c) Y. Wei, S. Lin, F. Liang and J. Zhang, Org. Lett., 2013,
 15, 852; (d) Y. Wei, F. Liang and X. Zhang, Org. Lett., 2013, 15,
 5186; (e) M. Li, H. Yuan, B. Zhao, F. Liang and J. Zhang,
 Chem. Commun., 2014, 50, 2360; (f) S. Lin, M. Li, Z. Dong,
 F. Liang and J. Zhang, Org. Biomol. Chem., 2014, 12, 1341;
 (g) E. Wei, B. Liu, S. Lin, B. Zhao and F. Liang, Org. Biomol.
 Chem., 2013, 11, 7212; (h) Y. Wei, S. Lin, J. Zhang, Z. Niu,
 Q. Fu and F. Liang, Chem. Commun., 2011, 47, 12394; (i)
 Y. Wei, S. Lin, H. Xue, F. Liang and B. Zhao, Org. Lett.,
 2011, 13, 1674; (j) H. Xue, H. Tan, D. Wei, Y. Wei, S. Lin,
 F. Liang and B. Zhao, RSC Adv., 2013, 3, 5382.
- 14 MTBD is a more efficient activator than DBU, in regards to the reaction time and product yield. Nevertheless, DBU was used as the activator in the following work.
- 15 Cyclic β-dicarbonyl substrates like 5,5-dimethylcyclohexane-1,3-dione did not give desired product under otherwise identical conditions.
- 16 For a recent nice example of using N-succinimidyl perester as a self-immolating imidation reagent, see: (a) K. Foo, E. Sella, I. Thomé, M. D. Eastgate and P. S. Baran, J. Am. Chem. Soc., 2014, 136, 5279; For Shabat's self-immolative polymer, see: (b) A. Sagi, R. Weinstain, N. Karton and D. Shabat, J. Am. Chem. Soc., 2008, 130, 5434.
- 17 NCS are inert and NIS exhibits lower efficiency than NBS.
- 18 For the formation of the ion pair intermediate, please refer to: (a) S. E. Denmark, W. E. Kuester and M. T. Burk, Angew. Chem., Int. Ed., 2012, 52, 10938; (b) A. Sakakura, A. Ukai and K. Ishihara, Nature, 2007, 445, 900; (c) S. A. Snyder and D. S. Treitler, Angew. Chem., Int. Ed., 2009, 48, 7899; (d) X.-L. Cui and R. S. Brown, J. Org. Chem., 2000, 65, 5653. The ion pair intermediate is also supported by the theoretical calculation and the ion conductivity measurement of NBS/DBU versus NBS in solution.
- 19 Selected examples: (a) A. T. Khan, M. A. Ali, P. Goswami and L. H. Choudhury, J. Org. Chem., 2006, 71, 8961; (b) D. Yang, Y.-L. Yan and B. Lui, J. Org. Chem., 2002, 67, 7429; (c)
 K. Jeyakumar and D. K. Chand, Synthesis, 2009, 2, 306; (d)
 G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre and L. Sambri, Angew. Chem., Int. Ed., 2005, 44, 6219.
- 20 (*a*) S. Gabriel, *Chem. Ber.*, 1908, **41**, 1132; (*b*) J. C. Sheehan and W. A. Bolhofer, *J. Am. Chem. Soc.*, 1950, **72**, 2786.